4.8.2. Indifference Curves. According to the classical theory of consumer behaviour, utility function (U) can be regarded as a function of the quantities of goods $x_{i},(i=1,2, \ldots, n)$ consumed by the consumer at any given time. Mathematically, we have

$$
U=f\left(x, x_{2}, \ldots, x_{n}\right)
$$

Let us consider the simple case in which the consumer's purchases are limited to two commodities, so that

$$
U=f\left(x_{1}, x_{2}\right)
$$

where U, x_{1} and x_{2} are explained earlier in $\S 4.8$. It is assumed that the function $U=f\left(x_{1}, x_{2}\right)$ is continuous and has continuous first order and second order derivatives).

Since the utility function is continuous, a given level of utility can be obtained from an infinite number of combinations of x_{1} and x_{2}. The locus of all combinations of the amounts of quantities consumed x_{1} and x_{2} for which the utility function is constant, is called an Indifference Curve. Mathematically, indifference curves are given by the equation :

$$
\begin{equation*}
U=f\left(x_{1}, x_{2}\right)=\text { Constant }=U_{0},(\text { Say }) \tag{4•77}
\end{equation*}
$$

Note that the points on ($4 \cdot 76 a$) represent a utility surface in 3 dimensions. The points on an indifference curve represent the various combinations of $\left(x_{1}, x_{2}\right)$, the quantities of commodities consumed, from which the consumer gets the same utility and hence, he is indifferent to them. That is why, these curves are called indifference curves. On indifference curves, the quantity consumed of one commodity is compensated by the increase in the quantity consumed of the other commodity.

Taking total differential in (4.77), we get (on an indifference curve) :

$$
\begin{array}{cc}
& d U=\frac{\partial f}{\partial x_{1}} \cdot d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}=d U_{0}=0 \\
\Rightarrow \quad & f_{x_{1}} d x_{1}+f_{x_{2}} d x_{2} \\
\Rightarrow \quad-\frac{d x_{2}}{d x_{1}}=\frac{f_{x_{1}}}{f_{x_{2}}}=\frac{\partial U / \partial x_{1}}{\partial U / \partial x_{2}}=\frac{M U_{x_{1}}}{M U_{x_{2}}} \tag{4•78}
\end{array}
$$

The slope $\left(\frac{d x_{2}}{d x_{1}}\right)$ of the tangent at any point on an indifference curve is the rate at which x_{1} must be substituted for x_{2} (or x_{2} for x_{1}) to maintain given level of utility to the consumer.

The negative of the slope $\left(\frac{-d x_{2}}{d x_{1}}\right)$ is the rate of commodity substitution or the Marginal Rate of Substitution (MRS) of x_{1} for x_{2} (or x_{2} for x_{1}).

The marginal rate of substitution of commodity X_{1} for commodity X_{2} is defined as the number of units of X_{2} that a consumer is willing to sacrifice for an additional unit of X_{1} so as to maintain the same level of satisfaction.

Fig. 4-10.

$$
M R S x_{1}, x_{2}=-\frac{d x_{2}}{d x_{1}}=\frac{M U_{x_{1}}}{M U_{x_{2}}}
$$

A typical family of indifference curves (which economists call an indifference map) is shown in Fig. 4-10. It may be pointed out that different consumers have different indifference curves. Moreover, the same consumer may have different indifference maps for different commodities.

Properties of Indifference Curves

(i) Since, $\frac{d x_{2}}{d x_{1}}<0$, [From 4.79] the difference curve is negatively sloped.
(ii) Indifference curves do not intersect.
(iii) Indifference curves are convex from below, i.e., convex to the origin.
(iv) An indifference curve that lies to the right of another yields more utility.

4•8-3. Derivation of the Demand Curve using Indifference Curves. Consider the utility function $U=f\left(x_{1}, x_{2}\right)$, subject to the budget constraint $y_{0}=p_{1} x_{1}+p_{2} x_{2}$, the symbols having their usual meanings. The equilibrium condition for constrained utility maximisation gives:

$$
\frac{M U_{x_{1}}}{M U_{x_{2}}}=\frac{p_{1}}{p_{2}}
$$

For given U, we can solve (4.80) for x_{2} in terms of x_{1}, p_{1} and p_{2}. Substituting this value of x_{2} in terms of x_{1}, p_{1} and p_{2}. substituting this value of x_{2} in the budget equation, we can finally obtain the value of x_{1} in terms of p_{1}, p_{2} and y_{0}, which gives the demand function for commodity X_{1}.

Similarly solving (4.80) for x_{1} in terms of x_{2} and substituting its value in the budget equation, we can find x_{2} in terms of p_{1}, p_{2} and y_{0}, which gives the demand function for commodity X_{2}.

From the equilibrium condition (4.80) we can obtain the demand functions for commodities X_{1} and X_{2} as explained below.

Thus, we see that the marginal utility equations (4.80) which are derived from the total utility functions, are used together with the budget equation (4.56) to get the demand

functions. Hence the parameters of the utility function will determine the parametric structure of the demand functions.

